The state of GMO analysis in Africa including regional networks

Chris Viljoen

Basic Needs and Gaps for GM detection in Africa

- No technical support for GM detection
- No mechanism for cooperation between GM detection laboratories
- No guidelines for best practice / minimum criteria
- No mechanism to facilitate training
- No proficiency appraisal of laboratories
- No links with other Networks

Regional GM detection Networks in Africa

- West African informal Network
- East African informal Network
- Southern African Network

Participating Countries

- Botswana
- Namibia
- Madagascar
- Malawi
- Mozambique
- Swaziland
- South Africa
- Tanzania
- Zambia
- Zimbabwe

17 laboratories

SANGL Coordination

- Chris Viljoen (South Africa)
- Dahlia Garwe (Zimbabwe)

Characteristics of the Network

- Non-political
- Participation is voluntary
- Non-prescriptive
- Participation is endorsed by the managing authority of the laboratory and the National Biosafety Focal Point

Structure of the Network

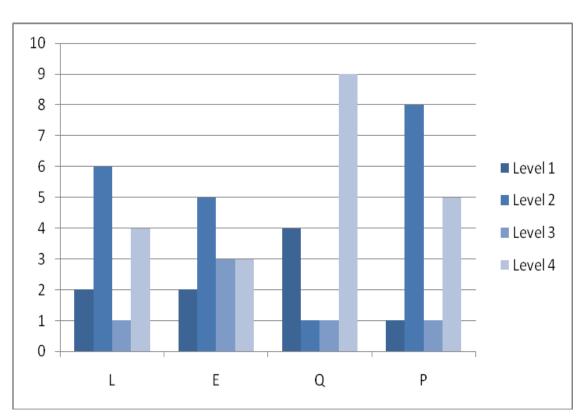
- Laboratories are represented equally
- The Network consists of a central coordinating reference laboratory (HUB) and participating labs (NODES)
- Laboratories nominate a participant in the Network
- Decision making is based on consensus
- Network is not limited to but operated with logistical support from RAEIN-Africa

SANGL Objectives

- 1. To build and strengthen capacities for GM detection
- 2. To establish guidelines and harmonised GM detection methods
- 3. To achieve international recognition in GM detection
- 4. To compile technical guidance papers on GM detection

SANGL Objectives cont.

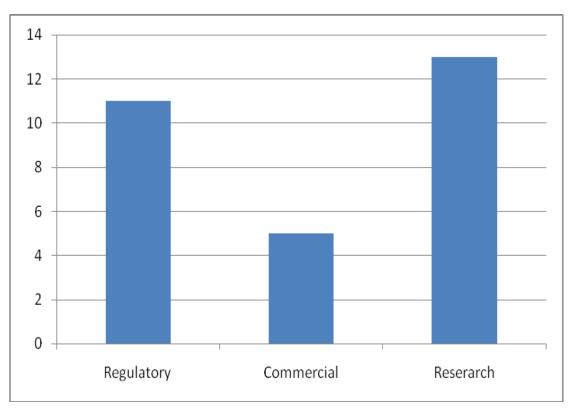
- 5. To establish links with other international GM detection laboratories and Networks
- 6. To establish an interactive communication platform for SANGL laboratories
- 7. To establish inter-laboratory collaboration between SANGL laboratories
- 8. To mobilise resources to support SANGL activities


SANGL Activities

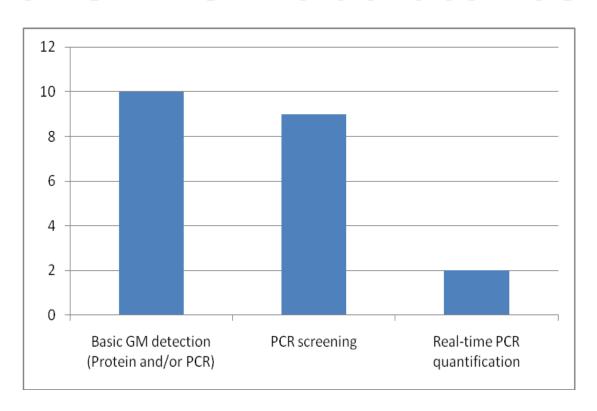
- 2009: Workshop to establish SANGL
- 2010: Training workshop in GM detection
- 2011: Strategic planning workshop and training in quality management
- 2012: 1st Proficiency round

Mapping the status of SANGL laboratories

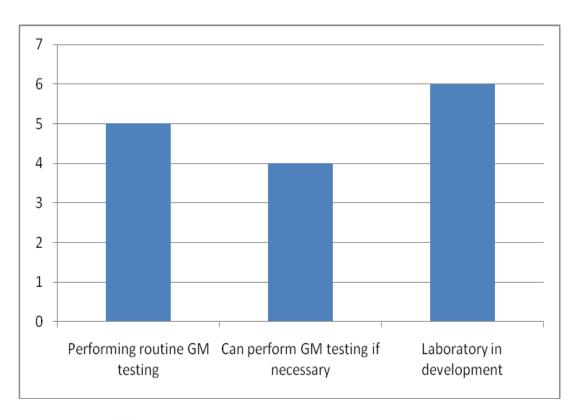
Status	Functional level of	Equipment (E)	Quality Management	Expertise of
Level	laboratory (L)		Documents (Q)	personnel (P)
1	Laboratories that can	PCR System	Quality system that	Personnel are trained
	perform PCR based GMO	 Real-Time PCR System 	includes a quality Manual,	in PCR based GMO
	screening and Real-time	 Gel electrophoresis 	safety manual and standard	screening and GMO
	PCR GMO quantification	Gel documentation system	operating procedures	quantification
		Optional: ELISA Plate reader		
2	Laboratories that can	PCR System	GMO testing is performed	Personnel are trained
	perform PCR based GMO	Gel electrophoresis	according to validated	in PCR based GMO
	screening	Gel documentation system	methods	screening
		Optional: ELISA plate reader		
3	Laboratories that use strip	PCR System or ELISA plate	Methods are not validated	Personnel are trained
	and/or ELISA based testing	reader		in strip / ELISA
	to detect GMOs			testing
4	Laboratories that are not	No specialized equipment	No methods	Personnel have no
	able to apply any form of			training
	GMO testing			

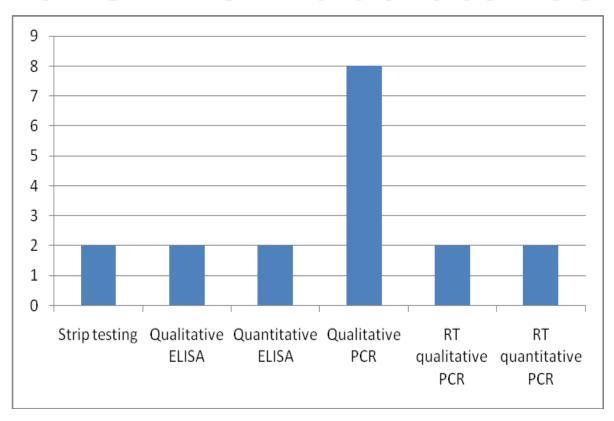

L: Functional level of lab

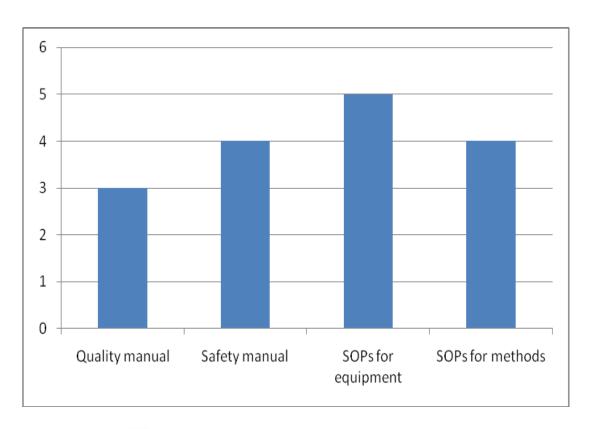
E: Equipment


Q: Quality management

P: Expertise of personnel







Conclusions

- SANGL laboratories are at different levels of progress
- Challenge: To provide different levels of support
- There is a continued need to support the development of expertise in GM detection

Challenges

- Mobilise resources to continue to maintain SANGL
- Mobilise resources to support SANGL activities

Training Workshop in GM Detection

Regional meetings – Region AFRICA

Discussion point:

1. Forthcoming regional technical challenges for GMO analysis

- Different laboratories are at different levels in terms of capability, infrastructure and expertise
- Need for regional capacity building in GM detection
- Need for infrastructure development in some countries
- Lack of commercial product support and access to equipment and reagents in some countries
- Lack of a mandate to perform GM detection in terms of regulatory frameworks in some countries

Regional meetings – Region

Discussion point:

2. Regional needs to meet these challenges

- Infrastructure development where necessary
- Capacity building:
 - GM detection
 - Lab management and quality management
- Need to develop regional Networks to support GM detection capacity building initiatives

Regional meetings - Region

Discussion point:

3. Road map / Prioritisation of necessary actions

- Actions that need to be prioritized at regional level:
 - Political awareness development
 - Mapping of labs involved in GM detection in terms of capacity, infrastructure, expertise and capacity building needs
 - Developing regional networks through capacity building

Regional meetings - Region

Discussion point:

4. Next steps at regional level / training needs that JRC could help to meet

- Continue with "Train the trainer" approach
- Training depending on level of expertise of the lab:
 - Sampling, DNA extraction, GM detection, GM quantification, data management, lab management and quality management
- Follow-up training with proficiency trials targeted to the level that would be relevant to that region/group of labs

Regional meetings - Region

Discussion point:

5. Identification of up to 3 regional representative(s) as contact person(s)

Outcome of the meeting: (4 regions identified)

- West Africa: Ousmane Koita (Mali)
- East Africa: Joyce Malinga (Kenya)
- Southern Africa: Chris Viljoen (South Africa)
- Central Africa: Roger Darmam (Cameroon)
- African Union as cc in communication